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One of Robert Glaser's special contributions to psychology and education is the concept of
criterion-referenced testing (Glaser, 1963). While norm-referenced testing supports decisions that 4
involve choosing among people or otherwise comparing them, criterion-referenced tests tell us
something about what people know or what they can do. In introducing the concept, Glaser was
beginning a long advocacy of adaptive education, of shaping education to each person's current
competences rather than choosing to educate only the people who score highest on general tests.

While this was his goal, most work on criterion-referenced testing (cf. Hambleton, 1984) has
focused on issues relating to certification, to setting of standards for educational outcomes, and to
tracking, that is, on selection more than on adaptation. There are a number of reasons for this, but the
situation can be summarized as follows. Adaptive education is a steering process. Norm-referenced
tests are designed to indicate reliably who is out in front, criterion-referenced tests are designed to tell
us exactly where each person is; but knowing where you are is not the same as knowing how to steer a
course toward a planned destination.

The purpose of this chapter is to illustrate one way in which the technologies of testing might
combine with certain cognitive science techniques to help steer instruction. We focus on steering an
intelligent tutor, i.e., on student modeling. However, the approach can be generalized to other
instructional forms, including reactive environments (exploratory microworlds) and perhaps even
conventional classroom instruction. We are discussing diagnostic testing to be used often, in small
amounts, to steer the course of instruction. Further, in contrast to relatively standard ( e.g.,
pretest-treatment-posttest) designs for individualizing the teaching of children, we focus on
individualizing the testing process to make it more efficient in steering instruction.

Problems of Diagnostic Testing

Any test, including a diagnostic test, consists of a number of items. The person being tested
carries out some performance of each of the items, scores are assigned to those performances, and those
scores are aggregated to arrive at an evaluation. To make steering tests, we need test items that are
relevant to the specific steering decisions that must be made about a particular student in a particular
context, and we need procedures for scoring performance on those items. Steering tests must be
efficient to administer, since steering requires frequent, but not necessarily precise, feedback (given
the inertia of teaching and learning, the steering error produced by believing an imprecise test will
probably be canceled out by subsequent course corrections).

Standard psychometric methods are not designed for steering tests. They are designed to assure
that different forms of a test are equivalent and that the scores on that test are reliable. The problem
of steering tests is that they must be brief, so that testing does not take too much time from learning.
This makes it difficult for them to be reliable, and steering requires at least some reliability of
feedback to be successful.

There are two ways a test can be made more reliable. The first is to increase the extent to which
performance on its items directly reflects the skills one wishes to assess. This can be done statisticaliv
or substantively. Statistical approaches such as item-response theory (Lord, 1980) help assure that
different items are measuring the same thing, and thereby increase the reliability of scores, but not
necessarily their validity. However, it is also possible to develop a microtheory of the competences one
wishes to teach. Such a microtheory can help in specifying items that test particular subsets of thetarget skills.

The second way to make a test more reliable is to use knowledge about the student's performance
on prior items to limit the information each new test item must provide. Aca- ive testing algorithms
have been developed for this purpose. They use a sequential strategy. After the student completes an
item, an estimate of the student's performance based upon the items so far completed is used to select
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the most informative next item to administer, and then the score on that next item is used to update
the estimate. The adaptive testing approach, which almost always requires a computer for the
real-time estimates just mentioned, can be applied even when nothing more than the difficulty
ordering of items is known. However, it is especially powerful if more detailed information about the
items is available. Again, a theory that relates performance on various test items to underlying
competences and their acquisition can be helpful, even if it is incomplete.

In at least one case, adaptive testing techniques were applied to diagnostic testing (Spinet i &
Hambleton, 1977). Spineti and Hambleton used learning hierarchies specified by rational task
analysis (Gagne, 1965) to help constrain the estimation process. That is, they decided on items
according to an analysis of the material being learned and to some theoretical predictions of the order
of acquisition for parts of that material. Doing this, they were able to achieve a 50% reduction in the
number of items required to achieve a given level of score reliability.

The approach we have taken to steering testing is somewhat different. It uses very simple
heuristics for reasoning about the level of a student's competence in particular subskills. Its power
derives primarily from its ability to intelligently manufacture practice opportunities (test items) for
the student that will be especially revealing about his current competences. We beiieve, although it
remains to be proven, that these practice opportunities are generally appropriate learning vehicles as
well as test items. In that sense, we are pursuing steering as a unified system in which testing and
learning are combined.

In our view, a cognitive theory of testing, and especially a theory of steering testing, should have
two characteristics. First, it should permit a partly logical (in contrast to a purely statistical)
constraining ofdiagnosis. Second, it should be based on a representation of the knowledge that is
needed to exercise the skill it purports to measure. The logical approach is not at all foreign to our
experience. When one is sick and goes to a physician, one is not satisfied with broad probabilistic
statements. Rather, one expects a diagnosis constrained by the physician's knowledge of disease.
More specifically, we expect the physician to be asking herself what diseases could produce the overall
complex of symptoms and signs presenting themselves to her. Diagnosis in medicine, then, is the
designing of a personal theory of a specific patient's pathology. This personal theory is rooted in
theories of disease mechanisms and not just in unexplained statistical relationships.

The diagnosis process is dynamic. For example, based on the hypothesis that a patient has heart
disease, the physician may probe for more explicit detail about certain symptoms or order a test that
may confirm or refute her theory. A teacher does this too when prior knowledge about a student,
combined with current observations, leads her to attribute grammatical errors in the student's paper
either to inexperience with written language or to use of nonstandard dialect or to a mistaken sense of
when formal conventions are needed.

The good teacher's diagnosis differs from that of a physician in one respect, though We come to a
physician to get a diagnosis when something is wrong -- she does not generally shape continuing
decisions about how we should act (except perhaps in developing special regimens, e g , diets for
control of diabetes). A teacher, in contrast, is carrying out an active, goal-directed activity -- teaching
-- which needs only small course corrections. Consequently, it seems reasonable to conduct the testing
from the teacher's point of view, at least in part.

We would like to produce tests that capture some of the capabilities of the most perceptive and
observant teachers. We want them to be driven mostly from the teacher's goal structures for teaching
but also to respond to knowledge of the expertise the teacher is trying to convey, the treatments I
available to the teacher for effecting learning, and certain more global teacher concerns, such as

adapting to general differences in aptitude and general characteristics of competence at different
levels of learning.

In the next section, we discuss the different kinds of knowledge that are needed to adapt teaching
to an individual student's course of learning. We take the viewpoint of intelligent tutoring system
design, but the same concerns arise in all approaches to instruction. This is followed by sections in
which a specific approach to the generation of diagnostically and educationally useful problems is
discussed,.e

Components of Teaching and Testing Knowledge

Several different kinds of knowledge are required in our approach to steering testing E:pecially
when designing computer systems to teach or to test. it is important to clarify the knowledge, or
competence, that is involved in dealing with a student We have categorized that knowledge into four
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types. I These are domain expertise, curriculum knowledge, instructional planning knowledge, and
treatment knowledge. Each type of knowledge has different structures, different generalized methods,
and different purpose and applicability. Further, there are a variety of connections from one type of
knowledge to another. Figure I shows these four categories with examples of the kinds of knowledge
they contain for an electricity tutoring/testing system under development at the Learning Research
and Development Center.

Domain Expertise

Domain expertise is always embodied in instructional decision making, either explicitly or
implicitly. Deep diagnosis of student difficulties may require an explicit representation of the
knowledge required for the performances that are the goals of instruction. For example, the ability of
a computer-based tutor to diagnose bugs (systematic errors) in children's arithmetic performances
requires having a model of the algorithms that experts use in executing those performances. Also,
feedback on test performance and advice to the student may have to be couched in terms of procedures
for acting rather than in terms of criteria for outcomes specified in the curriculum. One way or
another, the performances that constitute the goals of a curriculum derive from information about the
competences that constitute expertise.

Another aspect of domain expertise that is important in instruction and testing is knowledge of
the target task environment. When we speak of what it is we want people to do, we are referring not
only to the knowledge they need to perform successfully but also to the circumstances under which
that knowledge must be employed. Again, knowledge of these circumstances might be the basis for
curricular objectives, but those objectives rest upon domain expertise. If we have the objective that
given situation X, the student can do Y, it rests upon knowledge of what kind of situation X is and how
Y can be done in X. For example, a student might be able to solve a proportion problem at the time a
lesson on proportion is presented but not be able to use that knowledge later in solving a word problem
or even to solve the same problem as one of a set on mixed topics. When testing or teaching is done by
a computer program, the underlying domain knowledge sometimes must be made explicit.

Curriculum Knowledge

Curriculum knowledge is the specification of the goal structure that guides the teaching of a body
of expertise. Educational researchers and developers often treat the procedures that constitute
expertise and the instructional goals that constitute curriculum as more or less the same. They
assume that expertise can be split apart easily "at its joints" (to use Plato's phrase). The curriculum,
then, is a natural hierarchy of goals and subgoals to teach the natural units of expertise. From this
viewpoint, curriculum knowledge and domain expertise are the same thing. However, it appears that
there are many different plans for splitting apart expertise, especially when expertise involves
complex performances. For example, consider the curricular issues that arise in teaching simple
electrical principles. There are some basic concepts -- voltage, current, and resistance -- and some
basic laws -- Kirchhofls Laws and Ohm's Law. In addition, there are different types ofcircuits -- series
and parallel.

So, one legitimate decomposition of the subject might begin with voltage, teaching the behavior
of voltage in series and parallel circuits, then teaching about resistance in the two types of circuits,
and finally treating current. Another decomposition might, with equal legitimacy, build the entire
curriculum on Kirchhoff's current laws. Yet another view might treat parallel circuits as being quite
distinct from series circuits and redevelop the concepts of voltage, resistance and current separately
for each. We need to capture these multiple viewpoints if they correspond to different curricular goals
about which steering information may be needed. For this reason, the various subgoals of knowledge
that the teacher or curriculum writer can have are best represented by multiple hierarchical goal
structures; these goal structures overlap in the components of expert performance to which they refer.

Once we concede that instructional goals are not really a simple decomposition of the expertise J
being taught into discrete sets and subsets, we are in a position to understand why some testing that is
part of a curriculum may not be as diagnostic as we would hope. Specifically, we can understand why a
student might demonstrate clear competence on a curricular goal that is prerequisite to some other
goal but still appear, from the standpoint of the teacher of that second goal, to not have mastered the
first. For example, a student may demonstrate understanding of Kirchhoffs Current Law but fail to
apply it in a circumstance for which it is relevant. Separating expertise from curriculum allows us to
understand such situations better.

%I
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Suppose that we consider domain expertise to be represented by a surface. Expert knowledge is,
after all, highly interconnected. Even if it is properly represented as some kind of network, it can be
approximated by a continuous surface (specifically, a manifold of unspecified dimensionality). We
start by assuming that each curricular subgoal corresponds to a region of the expertise continuum.
The expertise subset corresponding to a curricular goal will likely be convex, in the sense that if two
pieces of knowledge are part of the same curricular goal, then any strong relationship that directly ties
them together should also be part of that goal. On the other hand, a curriculum goal's corresponding
expertise is not a completely closed set, since concepts it subsumes may well have connections to other
knowledge that goes beyond the goal. That is, the edges between the expertise subsets corresponding
to different curricular subgoals are not necessarily clean edges with no connections to other
knowledge.

The untargeted knowledge lying between the clusters of expertise directly addressed by the
curriculum can be important in remediating lack of transfer from a curriculum goal's prerequisites to
the final target capability. 2 Ordinarily, instruction is directed at the center of the expertise subset
corresponding to a curricular goal (see Figure 2). This helps keep the new knowledge to be taught
simple enough to be learned. However, this approach can sometimes backfire. For example, if two
bundles of expertise are both curricular goals, their centers may be well taught but their peripheries
ignored. For example, I may teach you how to compute the joint resistance of two resistors in series.
and this may satisfy an instructional objective. Later, if you need to find the joint resistance of three
resistors in order to solve a problem, you may be able to do that or you may not. In either case, simply
reteaching the two-resistor algorithm will be insufficient.

If a higher-order curricular goal happens to depend upon the integration of the two lower-order
subgoals, it is exactly the edges of their domain knowledge subsets on which it will likely depend. For
decisions about what to teach when remediation seems necessary and also for decisions about how to
interpret apparent inconsistencies in diagnosing whether a curricular subgoal has been achieved,
domain expertise may be needed.

Planning Knowledge

In addition to specific curricular goals, there are some other higher-order curricular issues that
need to be addressed in planning testing or teaching. Often, these are abstractions from, or specialized
viewpoints on, the curricular goal structure. These may include learning skills, problem solving %
heuristics, rather general aptitudes, and even preferences. These concerns, e.g., the more general
"inquiry" skill goals in a science course, overlap some of the higher-level goals in the curriculum. It
could even be argued that these concerns really are part of the curriculum, but we retain the
distinction since planning issues often color the exact form that goal-specific instruction might take

For example, we would treat as a planning issue the complexity of arithmetic computation that is
required to solve a word problem in a math course. The metagoal is for the student to be able to
advance through the problem-solving part of the curriculum even if his arithmetic skills are
developing more slowly than his problem solving skills. So, the arithmetic required in a word problem
might be adjusted to keep it simple enough to let new problem solving skills develop Later, when
problem solving skills are strong, the situation might reverse, and increasingly tough arithmetic
might be required whenever the student is predicted to find the problem solving tasks easy Note that
the issue of arithmetic skills getting in the way of problem solving could arise in curricula other than
math, such as the electrical networks curriculum sketched in Figures I and 3 It is for this reason
especially that we choose to treat the matter as a metacurricular planning issue. Sometimes
capability on skills that are not the focus of instruction will require alteration of instruct ional and
testing strategies for target skills. This is why instruction and testing systems need planning and
metacurricular knowledge.

The planning of teaching must also take into account the long-term, higher-order aspects of
education. metacognitive skills, mature and flexible preferences, and fundamental principles that
apply in many domains From the point of view of the steering test developer, though, these
higher-order issues represent, for the most part, variables to be controlled. We can't really understand
whether a student knows how to solve electrical network problems, for example, if his capability is
hidden by slow arithmetic performance So, we have to take account of metacurricular issues in
selecting problems for instructional or measurement use. That is, problems can be selected to require
domain-specific skills but to assure that the student answering a given problem will not be troubled by
weakness on general basic skills that are not the current focus of measurement or instruction. For %I
example, if a student is weak in arithmetic, a problem might be generated that required only N ,

small-integer arithmetic Ifa differ 'student finds it easier to receive information in graphical form.
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the information given for a problem might be presented via a diagram, graph, or even photographic
image.

Treatment Knowledge

We turn now to the matter of educational treatments and test item development. Even when we
know what to teach or what to measure, there remains a separate form of expertise involved in
successfully generating a situation in which a piece of knowledge can be exercised. For example,
several different types of problems can be created to test understanding of electrical network
principles (or to provide opportunities for coached practice). Problems can be quantitative or
qualitative. They can deal with unchanging situations or can focus on relative changes in different
measurements of a circuit. Since electricity knowledge must be applied in slightly different ways for
each type of problem, we could treat problem type as a curriculum issue. However, the knowledge an
intelligent system needs about problem categories is different in form from knowledge about
curricular goals. This is especially the case when we want to develop problems for practice or for
steering tests that require integrated use of several different skill components that are separate
curricular goals. The knowledge needed to develop such problems is specific to electricity and to the
teaching of electricity.

Practice and testing that requires multiple skills to be combined is an important goal of our work.
A contrasting approach is taken in some formal instructional development methodologies such as the
Defense Department's ISD (Merrill & Tennyson, 1977) approach. As generally used, that approach
consists of complete development and elaboration of the curriculum followed by the development of
tests and treatments corresponding to each curricular goal. This seems entirely sensible, an extension
of a management-by-objectives approach. However, if this method is applied superficially, difficulties
can arise. We have already discussed the problem of too-narrow focusing on core concepts without
adequate elaboration and qualification, but there are other, related problems as well. For example, a
variety of apprenticeship situations involve simultaneous practice of a wide range of skill components,
only some of which may be the current targets of instruction. When practice is provided on each skill
component separately, without attention to when each should be used and how they tie together,
fragmentary learning results. The instructor can show, on academic-style tests, that the student
learned each subskill that was to be taught, but the subskills cannot be put together to solve
real-world problems.

This, of course, is a viewpoint that has been taken before. In the world of reading instruction, for
example, we have just seen a long period in which holistic approaches have been taken. Similarly,
case study approaches to the teaching of medicine and business are driven by the same motivation.
There is, of course, some evidence against holistic approaches. For example, Chall (1967) surveyed a
number of reading curricula and found that, on average, weaker students benefited from a phonics
approach, in which recognition of each individual grapheme was the focus of separate instruction. In
the professional world, it is regularly asked how we can be sure that a student who took a case study
course really learned everything he should have "What if I get a disease that was not one of the cases
discussed?"

We can be a bit more formal about this problem if we view subskills as productions, actions to be
performed under specific conditions. When subskills are taught in isolation, the conditions under
which they should apply cannot be specified, since those conditions relate to the broader context of
holistic performances Also, there may be specific productions that are not represented as subgoals for
instruction but that are the "glue" needed to combine the productions that were direct curricular
targets.

An instructional synthesis of the holistic and componential approaches requires severv l things,
including an understanding of the circumstances under which new subskills or concepts shouid be
introduced in isolation even if they are later to be practiced more holistically. Of course, the missing
productions, the "glue" that holds together the subskills we target in our curriculum, cannot be taught
adequately in vitro; they require holistic instruction. The dilemma is that they also need to be
assessed. We may need to help students attend to "gluing" their fragmentary knowledge together if
they have trouble doing so on their own. Further, we may not always choose to introduce new pieces of
knowledge formally and explicitly, hoping that they will be inferred through rich domain experience
If we take this approach, which may be very efficient, we need to be able to assess later whether there
are any subgoals that were not well attained.

The basic approach we have taken is to generate test items (and instructional treatments, for
that matter) in the course of testing. That is, at any given point in the course of testing, if a question
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arises about a specific curricular goal, a test item is generated for it by an intelligent subsystem of the
tutoring program we (primarily the second author) are developing. The item can be shaped by
metacurricular considerations. Further, if multiple skills are required for any realistic performance
within the domain, sets of items can be developed over which particular subskill requirements are
systematically varied.

So, our approach, given a family of cognitive analyses (of expertise, metacurricular issues, and
problem environments in which the expertise can be manifested or practiced), is to intelligently
generate the equivalent of a controlled experiment in which the need for various target pieces of
knowledge is systematically varied. If the student fails to perform items requiring a piece of
knowledge but does perform other items that do not require it. then we infer that work is needed on
that knowledge. Further, we ask only about pieces of knowledge that are in the part of the curriculum
through which we are steering. Finally, rather than make statistical decisions about whether a piece
of knowledge is present or absent, we assume that knowledge can be present at various strength levels
and use experience about the reliability with which a particular piece of knowledge manifests itself to
specify the level of learning of that knowledge.

Summary. Perhaps the best way to illustrate the ideas just presented is to refer back to the
example given above. Figure 3 elaborates the knowledge categories, in part, for our system to teach
and test basic electricity principles. The curriculum knowledge includes three sets of'goals. laws,
concepts and architectures. Under each of these are subgoals. For example, the architectures being
considered are series and parallel circuits (i.e., no bridge circuits). The planning knowledge includes
two sets of planning concerns: the arithmetic difficulty of problems that are presented to the student
and the circuit complexity Both apply with respect to a variety ofcurricular subgoals For example,
circuit complexity may affect whether a student can handle parallel circuits, whether he can apply
Kirchhols current law, etc Arithmetic difficulty could also affect these subgoals, especially if
quantitative problems are presented to the student The treatment knowledge includes information
on problem formats and feedback to the student. Finally, the domain expertise contains specific
details of expertise in handling electrical networks that are referenced by the curriculum
specification.

Generating Test Items from a Student Model

Having described the architecture of the knowledge in a steering testing system, we turn now to
how one uses that knowledge to do assessment driven by a cognitive model of the target capabilities %

being taught. We offer as a first approximation an approach that has been tested in prototype form in %
an intelligent tutor. It assumes additional knowledge that we have not yet discussed: a student
model, some sort of knowledge structure specifying which subskills the student is thought to know and
which ones not.

We currently specify the student model by embedding it in the curricular goal structure of an r
intelligent tutor. For each curricular subgoal, there must be some sort of notation about the student's
assumed competence relative to that subgoal. In one tutor the first author and his colleagues are
building (Lesgold, Lajoie, et at 1986), there are only four notations -- unlearned, perhaps acquired.
probably acquired, and reliably strong These notations relate to an underlying cognitive model of
learning derived from John Anderson's 11983) work, The rules currently used to change a subskill
notation from one state to another are quite rough, but they are principled

Movement to the probably learned state implies that a correct production. or set of productions. is
assumed to have been developed by the student The perhaps state indicates that the student has been
observed to perform the target skill component, but that there is insufficient evidence to conclude that
he knows the conditions as well as the actions for the subskill The perhaps state is unstable Either
further correct performances will occur, prompting classification to the prohubl. state, or we will
assume that the single correct performance observed was accidental relative to the problem ecolog, for
the curriculum, and the student will be moved back to the unlearned state Recurrent reliable
performance will move a student from probably to strong One can imagine other approaches in which
the notations might include indicators of misconceptions as well The important point is that if we
look in on a student who is in the midst of learning a skill, some of the subskills will be clearly U
demonstrated already, some will be manifesting obvious problems, some will be unlearned, ind some %
will be in an unknown status

.4

If we consider how to diagnose student progress in a holistic practice environment given a
current student model state, we see that a first issue to be addressed is what to test In principle, the
student could have learned anything since we last tested him or her For that matter, any prior

. . . . . . . . . . . . . . .. ,.
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demonstration of competence might have been a fluke, so all positive entries in the student model are
tentative. Nonetheless, it would make no use of the student model at all if we merely tested for every
skill component at every opportunity. The student model enables testing for selected skill components
efficiently and in realistic performance contexts. It is the equivalent for steering testing of the
patient's chart for medical diagnosis.

We want to use the student model to generate constraints on the problems we pose to the student
as test items. These constraints should have the property that they make the items maximally
informative in tuning the student model to changes in the student's capabilities. What can guide our
choices of curricular goals to test? There are several possibilities. We discuss them in terms of the
four-level model of acquisition mentioned above (Unlearned, Perhaps learned, Probably learned, and
Strong). The Perhaps stage may be the most volatile. Suppose a curricular goal to be the attainment
of a specific production (carrying out a particular action when appropriate). When the action is
initially performed and is successful, there is a considerable chance that the student may not notice
the most important cues about the circumstance of the moment. So, he/she may be unable to
demonstrate the production in other circumstances. For all practical purposes, it was never really
learned at all. Till we have several demonstrations of the attainment of a curricular goal, we must
assume that our assessment of the student is unstable. Once we see multiple successful performances,
we will reclassify the student's competence to the Probably level. So, a first principle in selecting
current curricular goals to test is to be sure to check up on goals in the Perhaps state

A second issue has to do with prerequisite skills. If Skill A depends upon Skill B. then there is no
point in regularly testing for A until B is demonstrated. Put another way, if there is ordering
information about the curricular goals, we may want to concentrate testing on the region in the
ordering between the goals in the Strong state and those in the Unlearned state, testing most often the
Perhaps goals, checking for progress on the next few Unlearned goals, and checking occasionally to see
if any goals have gone from Probably to Strong (operationally, we check to see if problems requiring
this subgoal's skills are answered correctly for several consecutive occasions with varying
requirements).

The next issue involves metacurricular concerns, especially those relating to extraneous sources
of difficulty, such as requiring complicated arithmetic performance, presenting information in a
medium known to be difficult for the student, etc. The basic rule of thumb we propose is to adapt these
difficulty variables to the current student model level. For example, if the goal is to detect a
movement from Unlearned to Perhaps for some curricular goal, then we want to set the metacurricular
difficulty levels low, so that the initial weak acquisition of that subgoal's knowledge is not masked by
too many other demands for processing capacity. For movement from Perhaps to Probably, an
appropriate problem constraint is to have some situational changes from the problem in which the
initial appearance of the relevant knowledge was first noted, since the theoretical motivation for the
distinction is the possibility of the correct actions having been linked to imprecise conditions. For
validating movement to Strong on some goal, there should be a demonstration of the relevant
capability under more difficult circumstances, since the question is whether the relevant knowledge is
robust enough to occur even under adverse conditions.

P
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The Concept of Constraint Posting

The basic approach is to begin each cycle of diagnosis by sweeping through the curricular goal
structure, noting which subskills are "ripe" for testing. When the sweep is completed, we try to build
one or more problems that maximize our chances for accurately noting changes in the student's
current knowledge state, using some of the rules of thumb just described. We then use performance on
these made-to-order problems to decide how to update the student model -- we make a diagnosis.

Critical to the approach is the concept of constraint posting (Stefik, 1980). Rather than building
test items as we sweep through the curricular goal structure, we instead simply add to a list of item
constraints as we proceed. Each time we see an issue on which we would like more clarity, we post
that concern as a constraint on the test item generation process. When the sweep through the
curriculum is complete, we take the bundle of constraints and try to build items that satisfy them.
Stefik (1980) has shown that in many complex problem solving tasks involving multiple sources of
complexity and interactions between problem aspects (e.g., designing recombinant DN A experiments).
this constraint posting approach is much more efficient than piecemeal search processes

Constraint Posting Applied to Problem Generation

The item generation process, then, can work as follows We first consider the student model
Some of the subskills may be marked as reliably strong. These represent beachheads in the conquest
of ignorance. From these beachheads, as we venture out toward related subskills, we find some whose
status is uncertain (subskills that may or may not have been acquired yet and acquired subskills that
may or may not be reliable yet) We can make this search process more efficient if we know. for some
subgoals, which other subgoals are prerequisite to them and which they are prerequisite for A
subgoal for which a just attained subgoal is prerequisite is likely to be a testing target, but we will also
give some weight to all subgoals, using the rules of thumb discussed above Since we are making
steering decisions, we focus on the area of the curriculum that is currently the object of instruction
For each subgoal that is a current target of testing, at least one constraint is posted a test problem
must address that subgoal. For example, if we want to find out whether the student's capabilities in
applying Ohm's Law to series circuits have improved, we post constraints that the problem must
require Ohm's Law and must involve a series circuit.

We must also consider metacurricular planning issues. For example, a part of the system's
planning component may address the question of whether or not a physics student has adequate math
facility, or whether or not a student is able to learn information from graphical presentations
Constraints can be posted based on metacurricular aspects of the student model, too We ma",.
essentially, say to the test generator, "Since this student is poor in arithmetic. I can't find out if he ha;
learned (moved from unlearned to perhaps) how to use Ohm's Law to compute the current in a circuit if
the arithmetic comes out messy, so make the numbers come out simple"

Once the sweep through the curricular and planning structures is complete, the posted
constraints must be analyzed before test items are generated. Are there too many to handle at once' If
so, we might partition them into several clusters. Are the constraints inconsistent, in the sense that a
problem embodying some of them cannot, in principle, embody the others" For example, if we
constrain an electricity problem to be simple and we want to know both whether a student knows how
to deal with two resistors in series and also whether he knows how to deal with two in parallel, this
cannot all be done with one circuit problem. So, again, we might partition the constraints into bundles
that can comfortably be handled

Finally, one or more holistic problems that satisfy the constraints posted must be posed From
performance on a problem, either a diagnosis can be made immediately or a more focused problem can
be specified for further testing In essence, we are dealing with a qualitative proce-s that has man.% of
the properties of one of psychometrics' most important quantitative processes adapt:. e test ing

An Example from a Tutor for Basic Electricity Principles

To illustrate some of these ideas, we describe MO, a tutor that teaches basic elecl rical
principles (current, voltage, and resistance. Kirchhofrs Laws and Ohm's law M I0 is de-ignd to
work in both a problem-posing and an exploration mode In the exploratory mode, the .tudent can
make measurements on circuits and even build his own circuit in the didactic mode, though. NI()
must decide what problem to present to the student Thus, it faces the same problem that a testIng
program would face to examine the student model and determine which problem to p -e to )ptirn:l'e
the information value of the student's answer

0"".
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MHO's student model is a specialized form of checklist: a goal structure for teaching the specific
knowledge it wants to teach. The checklist derives from the curriculum and planning issues shown in
Figure 3 above. For each subgoal, the studen, is marked as being in one of the four states described
above, as shown in Table 1. Quantitative scores could be entered as well. What is critical is that some
student knowledge levels are considered to indicate potential for change while others are not. For
example, a student who knows certain material is not likely to suddenly stop knowing it, but a student
who has yet to learn some material is in a more changeable state.

From the subgoal scores and other knowledge, such as curricular sequencing and prerequisite
relationships, it is possible to define a set of subgoals that are most unstable. These are the subgoals
that may require more frequent measurement in order for instruction to be steered well. As discussed
above, they represent the front along which instruction is progressing through the curriculum goal
structure. The task of a test item generator, then, is to generate a test item that will be especially %
informative about this front. MHO does this by posting a set of constraints for the test problem. In the
student model given above, the Series, Kirchhoffs Law, and Current subgoals are at this front Each
constraint helps adapt the steering feedback to the student's current state. To see how this is done, we
need to consider MHO's architecture and the subject matter that it teaches and tests

Architecture

At this time, MHO teaches and tests several levels of DC circuits. It poses problems such as the
one shown in Figure 4. We call the architecture used in MHO the Bite-Size Architecture. It is an
object-oriented architecture for intelligent tutoring systems. 3 An object is a semiautonomous piece of
computer program that can be called upon to achieve particular goals. It includes both data structures
and procedural capabilities. Object-oriented programming involves designing sets of objects that can
efficiently interact to solve problems. Each curriculum subgoal (and also each metacurricular
planning issue and each problem format) is represented by an object called a "bite." Within the
computer program, a bite contains a record of the student's performance on a subgoal and the
knowledge needed to post a constraint for that subgoal.

Voltage, for example, is represented by a bite in MHO. That bite has rules for teaching about
voltage. It contains information pertinent to developing an understanding of what voltage represents,
including the constraints it should post to create relevant problems. Also, it can update the student
model information by noting how the student does on problems relevant to its subgoal One hyproduct
of this architecture and the curricular model on which it is based is that a tutoring program's
knowledge is modular and can easily be expanded by adding additional curriculir objects along with
their pointers to the other knowledge components (which may involve additions to those component,
as well). For example, MHO's designers are now expanding it to include curricular goals involving
simple alternating current circuits.

Problem Generation

MHO poses problems by presenting a circuit diagram and asking a question about it The
machinery used in problem generation chooses most of the circuit components randomly, but it is
constrained by both general and specific curricular subgoals (bites) which the student has not yet
mastered. Some of the choices represented by these constraints are the following

a. A problem can be posed in qualitative, quantitative or relative form

b. The problem can vary in the complexity of the arithmetic it requires and the complexity of
the circuit diagram to which it refers. This is determined by a global assessment of how much of the
curriculum the student has mastered.

c. The problem can require knowledge of Ohm's Law or either of Kirchhoffs Laws

d. The problem can focus on voltage, current or resistance

e. The problem can focus on series or parallel circuit topologies (MIHO also worries about
where the meters are placed in circuit diagrams, since there are some placements that students have
particular difficulty handling, but we ignore that matter to make presentation of the basic approach
more straightforward). J,

The product of constraint posting is stored as a list structure (see Footnote 3) to be used as the

basis for problem generation and problem solving This list structure contains information that
specifies how to create a circuit and a problem based on that circuit, what the circuit should look like,

.1' .**.* ,.'
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and what electronic concepts are relevant. An example of such a list, derived from the student model
shown in Table 1) is:

[I] ((((Rel Simple) ($ Kirchhoff)) ($ 1 = Series)) (UninterruptedS)) Series).

This list represents the constraints that have been posted in sweeping the model shown in Table
I and is the starting point for automatic generation of a problem. Rel stands for a Relative problem
that will pose a simple question asking if two areas of the circuit will have the same measurement (in
this case, current). Simple specifies the student's level of general understanding and will cause the
circuit to be very simple in structure. Kirchhoff is the law this problem centers around. I= Series is a
specialization of Kirchhoffs law, that current is equal at all points in a series array. UninterruptedS
informs the problem generator that one meter should appear next to another with no other
components between them (this is the simplest form for a problem looking at Kirchhoffs Law).
Constrained by this informatior the problem generator can develop many different circuits and pose
many different problems abou, Lhem, so it is quite plausible to do as much steering testing as any
student requires and also to give students sets of appropriate problems as homework.

At the next, more elaborated, level of representation the circuit is designated as a network of
resistors, a combination of series and parallel subnets with a power -ource. A more detailed list breaks
this circuit into four nodes, each of which represents a side of a rectangular circuit. The nodes are
created separately and then put together to make up a circuit. One at a time, the nodes are passed into
a recursive function called MakeCircuitString to be elaborated further. MakeCircuitString makes
decisions such as how many resistors are placed on a node, and whether these resistors should appear
in a parallel or series net. These decisions are based on the information from the first list.

Simple instructs MakeCircuitString to limit the number of resistors that appear and to
otherwise make the circuit conform to the specifications of a simple circuit. The Simple specifications
keep the components that will be drawn to a minimum. Simple also informs MakeCircuitString that
depending on what net we are working with all nodes should be of this kind. !=Series specifies the
net to be used: all sides are series arrays. If this were a Difficult problem, some sides might have
parallel subnets and others series. An example of a simple circuit, 1i, that has passed through
MakeCircuitString is

[21 ((VoltageSource) (Series (Resistor) (Resistor)) (Parallel (Resistor) (Resistor) h Wire))

Figure 5 below shows the circuit designated by [21,

The final specifications development step is determining what problem should be posed about the
circuit, where meters should be placed and what question should be asked about them This step
requires some information from the first list, e.g [I]. [=Series reveals whether current or voltage is
the target concept, while UninterruptedS holds information pertaining to how many problems and
where problems should appear. Several recursive functions tear apart the second list and insert
problem information (mainly meters) where it is best suited. Using the above example and placing
several meters into the list, one example of the next stage is

131 ((Problem Rel current after on (VoltageSource)) (Series (Resistor) (Problem Rel current before
off(Resistor)) (Parallel (Problem Rel current after on (Resistor) (Resistor)) (Wire')

This list is then passed to an intelligent problem developer, which composes and draws the
circuit. Figure 6 below shows a display corresponding to [3]. The question posed to the student will
end up being, '7s the current at Meter A higher, lower, or the same as the current at Meter B1"

The Simulator assigns values to the components, i e. resistance and voltage, and then finds the
dependent values, i e current, voltage drops over resistors, etc. It can, for simple problems, ensure
that all the values for current and voltage will be integral, and also can determine whether or not
resistors and voltage sources should be displayed. If the circuit were more complex, an iterative
propagation would occur next. Resistance for a subnet of a complex circuit, for example, would be
calculated by asking each subnet component its resistance and then adding them together Parallel
structures are handled recursively as well, using the appropriate formulae

The Softness of Student Classifications

We conclude by reconsidering more broadly the issue of diagnostic assessment ofcognitive skills

to steer instruction Fundamentally, cognitive skil, like physical skill, often requires substantial
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practice of its basic components in the contexts in which they are to be applied. Actions can be learned
without learning the exact conditions for which they are appropriate. Newly learned, and
consequently weak, knowledge can fail to be used because stronger but incorrect knowledge is
overgeneralized from related situations. Processing capacity demands due to one subskill may be so
great as to make the execution of another, newly formed subskill impossible. This means that for most
of the course of learning, a fundamental principle is true:

One cannot be sure a subskill has not been learned just because it
was not demonstrated on an occasion where it should have been.

On the other hand, cognitive skill, like physical skill, is partly redundant. Weak methods can
sometimes overcome the lack of appropriate domain knowledge. Sometimes, a problem that in theory
should require a particular subskill is solved correctly by accident. The correct action may be taken
with incorrect knowledge of the conditions under which it is appropriate, or an incorrect action may'
turn out to be "safe" this time only. This leads to a second fundamental principle.

One cannot be sure a subskill is completely learned just because it
has been demonstrated.

These two principles suggest that the steering approach to diagnostic testing, in which local
microtesting is embedded in the curriculum to steer instruction, is a more valid approach than the
broader diagnostic testing that has become part of many current monitoring programs in our .schools.
By asking broad, generic questions (e.g., "What can [ diagnose knowing nothing about the student in
advance and giving only a general test?") we can get only broad, generic answers. That is. we can
know how well, in general, learning is proceeding, but we can't steer specific children's education with
such broad indicators, any more than we could steer a ship if all we had was an hourly account of how
close to the correct path we were.

Empirical experience and cognitive theory tell us that an inherent property of cognitive
performance is that it is unreliable unless substantial practice has occurred and that success can come
for multiple reasons. These factors have to be taken into account in diagnosis. Ironically, perhaps, the
less reliable steering testing approach provides better steering capability than the highly refined
approaches used in current psychometric efforts at diagnosis. But this is no different than the irony
that continuously knowing approximately where you are affords better steering capability than
occasionally knowing how well you are steering, in general.

The field of testing has worked to try to become efficient at making precise estimates from %

inherently unreliable data, and it has done very well at this. Approaches such as item-response theory
and adaptive testing have allowed the broad and vague measures that tests provide to be made ever
more efficiently. Further progress, and especially progress in steering testing (as opposed to
certification and selection testing) will depend on better use of information we already have, or can
readily get, about the cognitive requirements of the performances and student competences relative to %
those performances that interest us. Like the physician, we will, in steering the course of a child's
education, be better guided by sketchy data tied to specific theoretical analysis than by precise, but
general, indicators. N

Our approach can be contrasted to the steering forms used in the curricula that grew from Bob
Glaser's work on individualized instruction. There, the steering idea was also used. However, the
technology of the time did not permit more than a short, uniform mastery test after each lesson This
allowed adequate teaching of the higher-aptitude student but did not handle the remediation problem
discussed above. That is, it suffered from having to treat each curricular goal and its corresponding
student capability as separable from every other, and it could not handle the problem of core learning
without fringe transfer. There was much discussion during the period of that curriculum development
about having remediation that was more than just doing the same thing again The present approach
to steering testing, which permits adaptation grounded in cognitive analysis of the instructional
domain, rests on the goal structure for educational research established during the period of work by
Bob Glaser and his colleagues on individually-prescribed instruction.
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lin Lesgold (in press) a three-category model was presented. Since then, we have become
convinced that the curriculum and treatment categories should be separated

2This issue is addressed more completely in Lesgold (in press).

3See Bonar, Cunningham and Schultz. 1986. for a description of An Object.Oriented .4rchitecture
for Intelligent Tutoring Systems MHO is implemented in Loops, Xerox's proprietary object oriented X
specialization of the standard artificial intelligence language Lisp The graphics and student interface
are handled via an interface package called Chips Chips is a program developed at the Learnir.g
Research and Development Center, primarily by John D Corbett and Robert E Cunningham. with
some contribution by Andrew D Bowen The Chips tools allow circuit displays to be de-signed -,o tht,
student can click the mouse (a mouse is a pointing device that causes a marker to mo e on the ,cre#n
as the device is moved on a table top: it often contains buttons as well, so that the computer user can
point to an object on the screen by moving the marker over that object and then pressing a button I on
any of the components and thereby cause a menu of query options to appear Fach object can hehave
differently: when a student clicks on a meter, a question is asked, when he',he clicks on a resistor a
special menu of options is presented
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Figure 1 Types of Knowledge Needed in Teaching and Testing
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Figure2 Remedial Knowledge May Not Be Core Knowledge
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Figure 3 Examples of Different Knowledges Needed for Steering Testing
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Figure 4 Example Problem from MHO Test Generator
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Figure 6 Circuit described by Eq 3

Table I Example Student Model
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Columbia, SC 29208 Department of Computer Science

1304 West Springfield Avenue
Dr. William Epstein Urbana, IL 61801
University of Wisconsin
W. J. Brogden Psychology Bldg. Dr. John R. Frederiksen
1202 W. Johnson Street Bolt Beranek & Newman
Madison, WI 53706 50 Moulton Street

Cambridge. MA 02138 I
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Dr. Alfred R. Fregly Dr. Daniel Gopher
AFOSR/NL Industrial Engineering
Bolling AFB, C 20332 & Management

TECHNION
Dr. Michael Friendly Haifa 32000
Psychology Department ISRAEL
York University
Toronto ONT Dr. Sherrie Gott
CANADA M3J IP3 AFHRL/MODJ

Brooks AFB, TX 78235
Julie A. Gadsden
Information Technology Dr. T. Govindaraj

Applications Division Georgia Institute of Technology
Admiralty Research Establishment School of Industrial & Systems
Portsdown. Portsmouth P06 4AA Engineering
UNITED KINGDOM Atlanta, GA 30332

Dr. Michael Genesereth Dr. Richard H. Granger
Stanford University Department of Computer Science
Computer Science Department University of California. Irvine
Stanford, CA 94305 Irvine, CA 92717

Dr. Dedre Gentner Dr. James G. Greeno
University of Illinois University of California
Department of Psychology Berkeley. CA 94720
803 E. Daniel St.
Champaign, IL 61820 Dr. Henry M. Halff

Halff Resources. Inc.
Dr. Lee Giles 4918 33rd Road, North
AFOSR Arlington, VA 22207
Bolling AFB
Washington. DC 20332 Dr. Bruce Hamill

The Johns Hopkins University
Or. Robert Glaser Applied Physics Laboratory
Learning Research Laurel, MD 20707

& Development Center
University of Pittsburgh Dr. John M. Hammer
3939 O'Hara Street Center for Man-Machine
Pittsburgh, PA 15260 Systems Research

Georgia Institute of Technology
Dr. Marvin D. Glock Atlanta. GA 30332
13 Stone Hall
Cornell University Dr. Ray Hannapel
Ithaca. NY 14853 Scientific and Engineering

Personnel and Education
Dr. Sam Glucksberg National Science Foundation
Department of Psychology Washington. DC 20550
Princeton University
Princeton. NJ 08540 Dr. Harold Hawkins

Office of Naval Research
Code 1142CS
800 N. Quincy Street
Arlington. VA 22217-5000

p
.

% % fsp



- -- -u--b WWVWWV -TVI. --

(DSK}<LISPFILES>DRIBO31OA.:2 10-Mar-87 09:27:48 Page 5

1987/03/09

Distribution List [Pittsburgh/Lesgold] NR 4422539

Dr. Barbara Hayes-Roth Dr. Earl Hunt
Department of Computer Science Department of Psychology
Stanford University University of Washington
Stanford. CA 95305 Seattle, WA 98105

Dr. Frederick Hayes-Roth Dr. Ed Hutchins
Teknowledge Intelligent Systems Group
525 University Ave. Institute for
Palo Alto, CA 94301 Cognitive Science (C-015)

UCSD
Dr. Joan I. Heller La Jolla. CA 92093
505 Haddon Road "P
Oakland, CA 94606 Dr. Janet Jackson

Rijksuniversitelt Groningen
Dr. Geoffrey Hinton Biologisch Centrum. Vleugel 0

Carnegie-Mellon University Kerklaan 30. 9751 NN Haren (Gn.)
Computer Science Department NETHERLANDS
Pittsburgh, PA 15213

Dr. R. J. K. Jacob
Dr. James 0. Hollan Computer Science and Systems
MCC. Code: 7590

Human Interface Program Information Technology Division
3500 West Balcones Center Dr. Naval Research Laboratory
Austin. TX 78759 Washington. DC 20375

Dr. John Holland Dr. Zachary Jacobson
University of Michigan Bureau of Management Consulting
2313 East Engineering 365 Laurier Avenue West
Ann Arbor. MI 48109 Ottawa. Ontario KIA OS5

CANADA
Dr. Melissa Holland
Army Research Institute for the Pharm.-Chim. en Chef Jean Jacq

Behavioral and Social Sciences Division de Psychologie
5001 Eisenhower Avenue Centre de Recherches du
Alexandria, VA 22333 Service de Sante des Armees

108 Boulevard Pinel

Dr. Robert W. Holt 69272 Lyon Cedex 03. FRANCE
Department of Psychology
George Mason University Dr. Robert Jannarone
4400 University Drive Department of Psychology %
Fairfax, VA 22030 University of South Carolina

Columbia. SC 29208
Ms. Julia S. Hough
Lawrence Erlbaum Associates Dr. Claude Janvier
6012 Greene Street Directeur. CIRADE
Philadelphia, PA 19144 Universite' du Quebec a Montreal

P.O. Box 8888, St. "A"
Dr. James Howard Montreal. Quebec H3C 3P8
Dept. of Psychology CANADA
Human Performance Laboratory
Catholic University of

America
Washington. DC 20064
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COL Dennis W. Jarvi Dr. Walter Kintsch
Commander Department of Psychology
AFHRL University of Colorado
Brooks AFB, TX 78235-5601 Campus Box 345

Boulder. CO 80302
Dr. Robin Jeffries
Hewlett-Packard Laboratories Dr. David Klahr
P.O. Box 10490 Carnegie-Mellon University
Palo Alto. CA 94303-0971 Department of Psychology

Schenley Park
Dr. Douglas H. Jones Pittsburgh. PA 15213
Thatcher Jones Associates
P.O. Box 6640 Mr. Al Kleider
10 Trafalgar Court Army Research Office
Lawrenceville. NJ 08648 P.O. Box 12211

Research Triangle Park
Dr. Marcel Just North Carolina 27709-2211
Carnegie-Mellon University
Department of Psychology Dr. Ronald Knoll
Schenley Park Bell Laboratories
Pittsburgh, PA 15213 Murray Hill. NJ 07974

Dr. Daniel Kahneman Dr. Stephen Kosslyn
Department of Psychology Harvard University
University of California 1236 William James Hall
Berkeley, CA 94720 33 Kirkland St.

Cambridge, MA 02138Dr, Milton S, Katz .

Army Research Institute Dr. Kenneth KotovSky5001 Eisenhower Avenue Department of Psychology
Alexandria, VA 22333 Community College of

Allegheny County
Dr. Steven W Keele 800 Allegheny Avenue
Department of Psychology Pittsburgh. PA 15233
University of Oregon
Eugene. OR 97403 Dr. David H. Krantz ,

2 Washington Square Village
Dr. Wendy Kellogg Apt. # 15J
IBM T. J. Watson Research Ctr. New York, NY 10012
P.O. Box 218
Yorktown Heights. NY 10598 Dr. Patrick Kyllonen

325 Aderhold
Dr. David Kleras Department of Educationa
University of Michigan Psychology
Technical Communication University of Georgia
College of Engineering Athens, GA 30602
1223 E. Engineering Building
Ann Arbor. MI 48109 Dr. David R. Lambert

Naval Ocean Systems Center

Code 441T
271 Catalina Bou'eward
San Diego. CA 92152-6800
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Dr. Jill Larkin Library,
Carnegie-Mellon University Naval Training Systems
Department of Psychology Center
Pittsburgh, PA 15213 Orlando. FL 32813

Dr. R. W. Lawler Science and Technology Division.
ARI 6 S 10 Library of Congress
5001 Eisenhower Avenue Washington. DC 20540
Alexandria. VA 22333-5600

Dr. Jane Malin
Dr. Alan M. Lesgold Mail Code SR 111
Learning Research and NASA Johnson Space Center

Development Center Houston. TX 77058
University of Pittsburgh
Pittsburgh, PA 15260 Dr. Sandra P. Marshall

Dept. of Psychology
Dr. Alan Leshner San Diego State University
Deputy Division Director San Diego. CA 92182
Behavioral and Neural Sciences
National Science Foundatio:, Dr. Humberto Maturana
1800 G Street University of Chile
Washington, DC 20550 Santiago

CHILE
Dr. Jim Levin
Department of Dr. Richard E. Mayer

Educational Psychology Department of Psychology
210 Education Building University of California
1310 South Sixth Street Santa Barbara, CA 93106
Champaign, IL 61820-6990

Dr. James McBride
Dr. John Levine Psychological Corporation
Learning R&D Center c/o Harcourt. Brace.
University of Pittsburgh Javanovich Inc.
Pittsburgh, PA 15260 1250 West 6th Street

San Diego, CA 92101

Dr. Clayton Lewis
University of Colorado Dr. James L. McGaugh
Department of Computer Science Center for the Neurobiology
Campus Box 430 of Learning and Memory
Boulder, CO 80309 University of California. Irvine

Irvine, CA 92717
Matt Lewis

Department of Psychology Dr. Gail McKoon
Carnegie-Mellon University CAS/Psychology
Pittsburgh, PA 15213 Northwestern University

1859 Sheridan Road
Library, Kresge #230

Naval War College Evanston, IL 60201
Newport, RI 02940

Dr. Joe McLachlan
Navy Personnel R&D Center

San Diego. CA 92152-6800
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Dr. James S. McMichael Chair, Department of
Navy Personnel Research Computer Science

and Development Center U.S. Naval Academy
Code 05 Annapolis, MD 21402
San Diego, CA 92152

Chair, Department of
Dr. Barbara Means Systems Engineering
Human Resources U.S. Naval Academy

Research Organization Annapolis, MD 21402
1100 South Washington
Alexandria, VA 22314 Technical Director,

Navy Health Research Center
Dr. Douglas L. Medin P.O. Box 85122
Department of Psychology San Diego, CA 92138
University of Illinois
603 E. Daniel Street Dr. Allen Newell
Champaign, IL 61820 Department of Psychology

Carnegie-Mellon University
Dr. George A. Miller Schenley Park
Department of Psychology Pittsburgh. PA 15213

Green Hall
Princeton University Dr. Mary Jo Nissen
Princeton, NJ 08540 University of Minnesota

N218 Flliott Hall
Dr. Andrew R. Molnar Minneapolis. MN 55455
Scientific and Engineering

Personnel and Education Dr. A. F. Norcio
National Science Foundation Computer Science and Systems
Washington. DC 20550 Code: 7590

Information Technology Division
Dr. William Montague Naval Research Laboratury
NPRDC Code 13 Washington. DC 20375
San Diego. CA 92152-6800

Dr. Donald A. Norman
Dr. Nancy Morris Institute for Cognitive
Search Technology. Inc. Science C-015
5550-A Peachtree Parkway University of California, San Diego
Technology Park/Summit La Jolla, California 92093
Norcross. GA 30092

Deputy Technical Director.
Dr. Randy Mumaw NPRDC Code OA
Program Manager San Diego. CA 92152-6800
Training Research Division

HumRRO Director, Training Laboratory,
1100 S. Washington NPRDC (Code 05)
Alexandria. VA 22314 San Diego. CA 92152-6800

Dr. Allen Munro Director, Manpower and Personnel
Behavioral Technology Laboratory,

Laboratories - USC NPRDC (Code 06)
1845 S. Elena Ave., 4th Floor San Diego, CA 92152-6800
Redondo Beach, CA 90277
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Director, Human Factors Office of Naval Research.
& Organizational Systems Lab. Code 1142PS
NPRDC (Code 07) 800 N. Quincy Street

San Diego, CA 92152-6800 Arlington. VA 22217-5000

Fleet Support Office. Office of Naval Research.
NPRDC (Code 301) Code 1142CS

San Diego. CA 92152-6800 800 N. Quincy Street
Arlington. VA 22217-5000

Library. NPRDC (6 Copies)
Code P201L
San Diego. CA 92152-6800 Psychologist.

Office of Naval Research
Technical Director, Branch Office. London

Navy Personnel R&D Center Box 39San Diego, CA 92152-6800 FPO New York. NY 09510

Commanding Officer. Special Assistant for Marine
Naval Research Laboratory Corps Matters.

Code 2627 ONR Code OOMC
Washington, DC 20390 800 N. Quincy St.

Arlington. VA 22217-5000
Dr. Harold F. O'Neil. Jr.
School of Education - WPH 801 Psychologist.
Department of Educational Office of Naval Research

Psychology & Technology Liaison Office. Far East
University of Southern California APO San Francisco. CA 96503
Los Angeles, CA 90089-0031

Dr. Judith Orasanu
Dr. Michael Oberlin Army Research Institute
Naval Training Systems Center 5001 Eisenhower Avenue
Code 711 Alexandria. VA 22333
Orlando, FL 32813-7100

Dr Douglas Pearse
Dr. Stellan Ohlsson DCIEM
Learning R & D Center Box 2000
University of Pittsburgh Downsview. Ontario
3939 O'Hara Street CANADA
Pittsburgh, PA 15213

Dr. James w. Pellegrino
Office of Naval Research, University of California.

Code 114281 Santa Barbara
800 N. Quincy Street Department of Psychology
Arlington, VA 22217-5000 Santa Barbara, CA 93106

Office of Naval Research. Dr. Virginia E. Pendergrass
Code 1142 Code 711

BOO N. Quincy St. Naval Training Systems Center
Arlington. VA 22217-5000 Orlando. FL 32813-7100
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Dr. Nancy Pennington Dr. James A. Reggia
University of Chicago University of Maryland
Graduate School of Business School of Medicine
1101 E. 58th St. Department of Neurology
Chicago, IL 60637 22 South Greene Street

Baltimore, MD 21201
Military Assistant for Training andPersonnel Technology. Dr. Wesley Regian

OUSD (R & E) AFHRL/MO
Room 3D129, The Pentagon Brooks AFB, TX 78235
Washington, DC 20301-3080

Dr. Fred Reif
Dr. Steven Pinker Physics Department
Department of Psychology University of California
EIO-018 Berkeley, CA 94720
M.I.T.
Cambridge, MA 02139 Dr. Gil Ricard

Mail Stop C04-14
Dr. Martha Polson Grumman Aerospace Corp.
Department of Psychology Bethpage. NY 11714
Campus Box 346
University of Colorado Dr. Linda G. Roberts
Boulder, CO 80309 Science, Education, and

Transportation Program
Dr. Peter Polson Office of Technology Assessment
UniverSity of Colorado Congress of the United States
Department of Psychology Washington, DC 20510
Boulder, CO 80309

Dr. Paul R. Rosenbaum
Or. Michael 1. Posner Educational Testing Service
Department of Neurology Princeton, NJ 08541
Washington University

Medical School Or. William B. Rouse
St. Louis, MO 63110 Search Technology, Inc.

5550-A Peachtree Parkway
Dr. Mary C. Potter Technology Park/Summit
Department of Psychology Norcross, GA 30092
MIT (E-10-032)
Cambridge, MA 02139 Dr. David Rumelhart

Center for Human
Dr. Paul S. Rau Information Processing
Code U-32 Univ. of California
Naval Surface Weapons Center La Jolla, CA 92093
White Oak Laboratory
Silver Spring, MD 20903 Dr. Walter Schneider

Learning R&D Center
Dr. Lynne Roder University of Pittsburgh
Department of Psychology 3939 O'Hara Street
Carnegie-Mellon University Pittsburgh, PA 15260
Schenley Park
Pittsburgh, PA 15213
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Dr. Miriam Schustack Dr. Richard Sorensen
Code 51 Navy Personnel R&D Center
Navy Personnel R & D Center San Diego, CA 92152-6800
San Diego, CA 92152-6800

Or. Kathryn T. Spoehr

Dr. Marc Sebrechts Brown University
Department of Psychology Department of Psychology
Wesleyan University Providence, RI 02912
Middletown, CT 06475

Dr. James J. Staszewski
Dr. Colleen M. Seifert Research Associate
Intelligent Systems Group Carnegie-Mellon University
Institute for Department of Psychology

Cognitive Science (C-015) Schenley Park

UCSO Pittsburgh, PA 15213
La Jolla. CA 92093

Dr. Robert Sternberg
Dr. Ben Shnelderman Department of Psychology
Dept. of Computer Science Yale University
University of Maryland Box 11A. Yale Station
College Park. MP 20742 New Haven. CT 06520

Dr. Robert S. Siegler Dr. Kurt Steuck
Carnegie-Mellon University AFHRL/MOD
Department of Psychology Brooks AFB
Schenley Park San Antonio TX 78235
Pittsburgh. PA 15213 D

Dr. Paul J. Sticha

Dr. Herbert A. Simon Senior Staff Scientist
Department of Psychology Training Research Division
Carnegie-Mellon University HumRRO
Schenley Park 1100 S. Washington
Pittsburgh. PA 15213 Alexandria. VA 22314

LTCOL Robert Simpson Dr. John Tangney
Defense Advanced Research AFOSR/NL

Projects Administration Bolling AFB. DC 20332
1400 Wilson Blvd.
Arlington. VA 22209 Dr. Kikumi Tatsuoka

CERL
Dr. H. Wallace Sinaiko 252 Engineering Research
Manpower Research Laboratory

and Advisory Services Urbana, IL 61801
Smithsonian Institution
801 North Pitt Street Dr. Perry W. Thorndyke
Alexandria, VA 22314 FMC Corporation

Central Engineering Labs
Dr. Richard E. Snow 1185 Coleman Avenue. Box 580
Department of Psychology Santa Clara, CA 95052
Stanford University
Stanford. CA 94306
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Dr. Sharon Tkacz Dr. Heather Wild
Army Research Institute Naval Air Development
5001 Eisenhower Avenue Center
Alexandria, VA 22333 Code 6021

Warminster, PA 18974-5000
Dr. Douglas Towne
Behavioral Technology Labs Dr. Robert A. Wisher
1845 S. Elena Ave. U.S. Army Institute for the
Redondo Beach, CA 90277 Behavioral and Social Sciences

5001 Eisenhower Avenue
Headquarters. U. S. Marine Corps Alexandria, VA 22333
Code MPI-20
Washington, DC 20380 Dr. Martin F. Wiskoff

Navy Personnel R & D Center
Dr. William Uttal San Diego, CA 92152-6800
NOSC, Hawaii Lab
Box 997 Dr. Dan Wolz
Kailua, HI 96734 AFHRL/MOE

Brooks AFB. TX 78235
Dr. Kurt Van Lehn
Department of Psychology Dr. Wallace Wulfeck. III
Carnegie-Mellon University Navy Personnel R&D Center
Schenley Park San Diego, CA 92152-6800
Pittsburgh, PA 15213

Dr. Joe Yasatuke
Dr. Beth Warren AFHRL/LRT
Bolt Beranek & Newman. Inc. Lowry AFB, CO 80230
50 Moulton Street
Cambridge, MA 02138 Dr. Joseph L. Young

Memory & Cognitive
Dr. Keith T. Wescourt Processes
FMC Corporation National Science Foundation
Central Engineering Labs Washington. DC 20550
1185 Coleman Ave., Box 580
Santa Clara. CA 95052

Dr. Douglas Wetzel
Code 12
Navy Personnel R&D Center
San Diego, CA 92152-6800

Dr. Barbara White P

Bolt Beranek & Newman. Inc. P
tO Moulton Street
Cambridge, MA 02238

Dr. Christopher Wickens
Department of Psychology
University of Illinois
Champaign, IL 61820
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